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Two-loop background field calculations for gauge theories 
with scalar fields 

Ian Jack 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver Street, Cambridge CB3 9EW, England 

Received 2 August 1982 

Abstract. Recent calculations of the ultraviolet divergences of two-loop vacuum graphs 
in the presence of an arbitrary background field for a pure gauge theory are extended to 
arbitrary couplings to a scalar field on flat space. 

1. Introduction 

In a recent paper by Jack and Osborn (1982) the divergent behaviour of two-loop 
vacuum graphs in the presence of an arbitrary background field on flat space was 
analysed. Dimensional regularisation was employed and the pole terms in E = 4 - d 
were determined in terms of the short distance behaviour of the exact propagators 
obtained using heat kernel techniques. The reader is referred to this paper, henceforth 
denoted by I, for basic details of the method and notation, and a comprehensive list 
of references. The procedure was there applied to the calculation of the divergences 
of the two-loop vacuum functional for a pure non-abelian gauge theory. In the present 
paper we extend this calculation to the case of a general gauge theory containing both 
vector and scalar fields. We reproduce the results of van Damme (1982) who adopted 
the method of 't Hooft (1973) (which at least to one-loop level is formally similar). 
In D 2 we explain the general formalism appropriate to all orders in the perturbation 
expansion, in § 3 we perform the one-loop renormalisation and in § 4 we calculate 
the two-loop counterterms. Some useful results pertaining to the heat kernels for the 
fluctuation operators involved are presented in appendix 1,  while appendix 2 contains 
some identities derived from the gauge invariance of the scalar potential. 

2. The general formalism 

We consider a semi-simple group G and a real scalar field cp, regarded as a column 
vector with components vi, transforming under a representation of G with generators 
Ta, where 

[Tay T b I  = CabcTc, ( Ta )T = - Ta, Tr(TaTb)= -&b, (2.1) 

D,, = a, +A:, A;P, = A,,aTa, (2.2) 

with Cabc totally antisymmetric. The appropriate covariant derivative acting on cp is then 
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1084 I Jack 

where the gauge field belongs to the adjoint representation of G, with components 
A,,,, and the corresponding generators rzd in this basis satisfy 

[tzd, tidl = cabctc , (ta )bc = -cabo Tr(ttdfid) = -Cab. (2.3) ad ad 

The covariant derivative in the adjoint representation is 

9, =a,+Aid, Aid = A,,attd, (2.4) 

and the field strength then has components 

F , , a  = a&.*, -a&,., +CabcAfi,bAu,c. (2.5) 

For X ,  Y in the adjoint representation the group invariant scalar product can be 
conveniently written 

(XU) = xa Y,. (2.6) 

In perturbative calculations, quantities are expanded systematically in h. or the 
number of loops, as 

Q = Q'"'h.". 
" 

The renormalised action which appears in the functional integral is, in d dimensions, 

S[A, cp1= ddX(7(F,uZaF,")+~iD,,p)TZ,D,cp 4 g  + V(cp)) (2.8) 

where Za, Z ,  are group invariant matrices acting on the adjoint representation and 
on cp respectively. Together they and also V are regarded as expanded as in (2.7) with 

1 

2 ' 0 '  = 1 and V'O' = V(cp). (2.9) 

The quantum fields A:, cpq are expanded about arbitrary background fields A,, 
cp as 

A: =A,  +gh.1'2Z~/2u,, cpq = cp + h'/2Zf/2f, (2.10) 

where the fluctuations U,, f are integrated over in the functional integral and Z,, 2, 
depend on the (essentially arbitrary) overall scale of U,, f which will be specified later. 

It is natural in the present background field calculation to combine the vector and 
scalar fluctuations U, and f into a single vector F, 

F = (";") , (2.11) 

with the scalar product (for flat space) 

(F', F )  = ddx((u~u,)+frTf).  (2.12) 

For a scalar field w in the adjoint representation of G, we also define an associated 
gauge mode given by 

(2.13) 
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where 9* is defined in (2.4). The corresponding scalar product for the scalar fields is 

( w ’ ,  U )  = I ddx ( w ’ w )  

so then & has an adjoint operator 9 * satisfying 

(&U, F )  = (w ,  &*F) 

which requires 

(&*F)a = - (9 * U ) ,  + gcpTTd. 

(2.14) 

(2.15) 

(2.16) 

The vacuum functional W [ A ,  Q, K ]  for a source K coupled just to the quantum 
fluctuations is then given by the functional integral 

e w  =Id[., f l r e x p  (2.17) 

where Sd is an appropriate gauge-fixing term for the fluctuations U,, f and r is the 
corresponding Faddeev-Popov determinant. Background field methods enjoy par- 
ticular simplicity when Sgf is chosen so that W is invariant under gauge transformations 
on the fields A,, Q. For K = 0, W is independent of the precise prescription for gauge 
fixing given by the choice of Sd, In this case, if tadpole type diagrams are to give 
zero contributions, A,, Q are constrained to each order of the loop expansion with, 
to lowest order, A:’, cp“’ classical solutions for which S‘O’ is stationary. For arbitrary 
A,, cp, it is, on the other hand, possible to choose K so that W ets contributions 
only from one-particle-irreducible graphs. To each order Z!&, ZIF1) and V‘”)  are 
determined so as to ensure that W‘“’[A, cp, K ]  is finite. We adopt the minimal 
subtraction scheme whereby these quantities are uniquely determined by containing 
just poles in E .  

The natural gauge-fixing term is expressed in terms of F by 

S,f=i(&*F, 6 * F )  (2.18) 

so that from (2.12) and (2.15) 

Sgf = i(F, 6%*F). (2.19) 

An infinitesimal gauge transformation on A:, cpq gives rise to the fluctuation 

(coinciding with (2.13) for h = O ) .  From (2.18) and (2.20) the standard argument 
leads to a ghost determinant 

r = det(G*Z-”*Gq). (2.21) 

The choice (2.18), in conjunction with (2.21), then fixes the scale of F. 
The action has an expansion expressible in terms of FR = Z”2F as follows: 

S[Aq, Q q l  = S[A, PI+ (J, FR) +~(FR, MFR) +SI(FR) (2.22) 
where 

(2.23) 
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introducing the notation 

( 2 . 2 6 )  

(2 .27 )  

when we combine ( 2 . 1 9 )  and (2 .24 )  we obtain the effective zeroth-order operator on 
the quadratic fluctuations in the form 

(2 .28 )  

( 2 . 2 9 ~ )  

( 2 . 2 9 6 )  

The Green functions (eF and Gg for AF and &*9 yield the propagators for the 
vectors, scalars and Faddeev-Popov ghosts, represented in diagrams by wavy, straight 
and broken lines respectively. We write YF as a matrix according to the decomposition 
(2 .11 )  

( 2 . 3 0 )  

Since AF is symmetric this has the symmetry property YF(x ,  y )  = [Y”(y, x)IT, so that 
in particular 

(2 .31 )  F G , , i a ( x ,  Y )  = GF,ai(y, 

The ghost determinant in (2 .21 )  may be rewritten 

In perturbative calculations, when W is given by the sum of connected vacuum 
graphs, in our formalism it is necessary to include Feynman diagrams with mixed 
vector-scalar lines, in addition to the usual vector and scalar lines, represented by the 
elements of YF in ( 2 . 3 0 ) ,  and also ghost lines given by G ”  resulting from the expansion 
of ln(1 +GgE) in ( 2 . 3 2 ) .  
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3. One-loop renormalisation 

In this section we briefly recapitulate the one-loop perturbative evaluation of the 
vacuum functional and derive 2, and 2, to one-loop order. We shall set h = 1. 

The zero-loop vacuum functional is simply the classical action, 

W‘O’ = - S“’[A, cp]. (3.1) 

For the one-loop contribution we take K =.I(’’ and the result is then 

W“’[A, c p ]  = -S“’[A, cp]-tln(det AF/det AFo)+ln(det &*$/det (@*G)o) (3.2) 

where A. = limlxi+m A. We assume that the ratios of determinants in (3.2) are infrared 
finite. For evaluating the ultraviolet divergent behaviour of the determinant of an 
elliptic differential operator on flat space of the form 

Ax = - 1D2+ Y(x), D, =a,+x,(x), (3.3) 
where X ,  and Y are general matrices, the heat kernel method expounded in I leads 
to the following prescription: 

(-ln(det A/det AO))’Ole = ( 1 6 ~ ’ ~ ) - ’  ddx Tr(cA-cAo), ( 3 . 4 ~ )  

(3.4b) 

(3.4c) 

I 
= (;G,~G,~ + y2) ,  

G,“ = a,x, -ax, + [X,, X I .  
Of course this gives rise to precisely the same counter-Lagrangian as obtained by 

For the two operators with which we are concerned here, AF and 6*9, we have 
’t Hooft (1973). 

Substituting these quantities in turn into (3.4), and using (2.1), (2.3) and (A2.3), we 
find for the pole contribution in (3.2) from the one-loop vacuum graphs 

which may be cancelled by taking in S“’[A, cp] 

2 2 ’  = ( l / e ) ( g 2 / 1 6 ~ ’ ) ( ~ C - $ R ) ,  ( 3 . 8 ~ )  

2;’ = - ( l / e ) ( g ’ / 1 6 ~ ~ ) 8 T ’  13.86) 

V“’(cp) = (1/~)(1/16~~){~Tr[U”(cp)~]-g~U’(cp)?’T~cp +:‘T~[P(P)~]}. (3 .8~)  
Manifestly only if U ( p )  is a general quartic gauge-invariant polynomial in cp can 

V“’(cp) be absorbed in a redefinition of coupling constant in V(cp). The two-loop 
calculations in the next section also determine the one-loop contributions in Z,, 2,. 
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These can be determined more simply and independently by requiring that 

( F ( x ) ) =  I ddy @(x, Y)L(Y), L = (*;;) Y (3.9) 

is finite, where L represents the F to vacuum amplitude. Our choice of K = J‘O’ 
ensures that Li0’ = 0 and L“’ is given by the one-loop graphs of figures 1, 2. To 
calculate these we need S!’) : 

Sio’ = I ddx{g(93 ,vp[va ,  v p l ) + k 2 ( [ v u , ,  upl[vp, ~ 0 1 )  

+ g ( zf)’(D,f + gv z ~ p  + igv zf) + (1 / 3 !) U y k f i f j f k  + (1 /4 !) U $lfififkfi). 
(3.10) 

Figure 1. Contributions to h:”. 

We then obtain 

hjl’ = g2(TaTbCp)z(G:u,ab -G%)diag+g[Ta(2DwG; +GrG,)a,,,,li -tU$Gf,,l,s 

- Vf”’(~p)  + [(Z~”Z,)“’D’Cp 3, - [ ( Z ,  ) T U’],, (3.11) 1/2 (1’ 2 

t ‘ l ’  
,,a = g Tr(r:d{9pGcF + g w G L  -293,GE, -gwGKlciiag)-tg Tr(TaDwGzlag) 

+g2~~,bd,sp{Ta, T b h  - ( 1 / g ) [ ( z ~ ’ 2 z ~ ) “ ’ 9 a , F ~ ~ l Q  

+ g& (2 :12T)QZ@)(1)DwCp. (3.12) 

In (3.10) and (3.11) we have used the notation that for a quantity H ( x ,  y ) ,  such 
as formed by the Green functions with various covariant derivatives acting on them, 
Hdlag(x) = H(x,  x). With dimensional regularisation H d , a g ( X )  is well defined albeit 
containing, in general, poles in E. 

Using (A1.3a, b )  and also (A2.8), we find that the finiteness of L“’ is ensured by 
taking 

(2;” ) ( l )  = ( 1 / ~ ) ( 2 g ~ / 1 6 & ‘ ~ ,  (3.13) 

(3.14) (2, 1/2  ) (1) = - (1/~)(2g~/16.rr~)C.  

4. The two-loop calculation 

In this section we calculate the divergent part of the two-loop vacuum functional, 
which arises from the one-particle-irreducible diagrams shown in figure 3. The analysis 
of the divergences of the two-loop vacuum graphs depends on the detailed knowledge 



Two-loop calculations for gauge theories with scalars 1089 

I m n 

V W Y 

Figure 3. Two-loop IPI  graphs. 

of the short distance behaviour of the propagators in the presence of the background 
fields in d dimensions described in I, briefly re-presented here in appendix 1. In the 
following discussion we make heavy use of the symmetry (2.31) to simplify the 
expressions involved. 

There are two main classes of two-loop one-particle-irreducible vacuum diagrams. 
The first class are those in figures 3(a, b, c, d )  which arise from a single quartic 
interaction, as contained in SF’, equation (3.10), and involve, for the two closed lines, 
propagators without derivatives, with coincident space arguments. For the four-gluon 
vertex the full expression was given in I, while for the additional diagrams resulting 
from the two-scalar, two-gluon vertex 3(b, c )  and four-scalar vertex 3(d) the complete 
expressions, suppressing spatial arguments, are 

The pole parts, easily obtained from (A1.3a), are 

W\% [A,  VI^'^ 



(4.5) 

(4.6) 

(4.7) 

The remaining class of IPI graphs involves two trilinear interactions from Sio' or 
the ghost interaction, E in (2 .32) ,  linked by a product of three propagators G(x, y) .  
The interaction may have dimension four with derivatives, or dimension three. In 
the general expressions corresponding to figures 3(e-t) ,  spatial arguments are again 
suppressed; in this case the forms have been arranged so that any functions or 
derivatives on the right of one of the G's implicitly depend on y, on the left on x. 
The pole contributions can be found using the methods of I for such products of 
Green functions. It is useful here to note that the off-diagonal components Gf;,,i, 
GEjb in (2 .30)  corresponding to mixed vector-scalar lines do not have the leading 
short-distance singularity as x -* y. These vacuum graphs produce both local pole 
terms arising from the leading short-distance singular behaviour of all three propa- 
gators, and non-local terms from the short distance behaviour of two propagators in 
conjunction with the part of the third regular in the short distance limit. (From ( A l . l )  
there is a well defined decomposition into regular and singular parts.) Products of 
propagators where the leading short-distance singularity is (x - Y ) - * - ~  (in four 
dimensions), N 2 0, with dimensional regularisation produce poles in E multiplied by 
S functions of x - y, with up to N derivatives. The resulting pole terms for W'2' then 
involve single x integrals. 

Except for the cases where the full expression was given in I, we give below the 
complete amplitude for each diagram and then the resulting pole terms obtained using 
the analysis of I, in conjunction with (A1.2). The details are straightforward although 
sometimes a little tedious. 

The most singular graphs are those with two dimension-four vertices shown in 
figures 3 ( e , f ,  g ) ,  for which N, mentioned above, takes the value 4. For 3 ( e , f ) ,  the 
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full contributions were given in I and now give rise to pole terms 

w:’,’1 [A, cp]y’= 

=g2(16.rr2~)-2 ddx[(6-a&)(F,,C2F,,)+q(l-fs) Tr(CP2) 

+ 9  zg 2 ( l - & & ) c a b c p  T TaTa2cp -$(12-&) Tr(tzdPttdP)] 

+ 9 Tr(t”,dPt:dH:adi,,)}, (4.8) 

w:’,’,[A Ipoie = g2 J ddx[~&(F, ,C2F, , ) - ;Tr(CP2)  
” ( 1 6 ~ ’ ~ ) ~  

(4.9) 
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+Tr(U”TaTb)H~Uh.abd,., -g2SDTTaTbT29H~u,abd,~~ + Tr(t”,dPt “,dHEud,a, ) 

+Tr(CPHEad,ap) +Tr(TaU”TaHziag )-g29TTaTfizagTbTa9 

+ P a b  TdTaTbHziag 11. (4.11) 

The next three diagrams, in figures 3(h, i, j ) ,  contain two dimension-three vertices 
and hence the products of propagators are two orders less singular than 3(e, f, g), and 
thus N = 2 here. The full amplitudes are 

givin ri to pole terms 

(4.15) 
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where in deriving (4.16) we have made use of (A2.11) and (A2.16). We now come 
to four diagrams which contain one dimension-three and one dimension-four vertex 
and also one mixed vector-scalar line, and hence potentially have N = 1. The complete 
contributions are as follows: 

The respective pole contributions are 

The final pole contributions from IPI diagrams arise from those in figures 3(o,p) 
which, with two dimension-four vertices and two mixed vector-scalar lines, have 
N = 0. Their amplitudes are given by 
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which yield divergent terms 

W\% [A,  ql?le 

and 

(4.28) 

The products of propagators in the last four IPI two-loop diagrams, figures 3(q-t), 
are less singular than (x - y)-4  in four dimensions and hence give only finite contribu- 
tions without any regularisation and produce no poles in E : 

W\?I [A,  qlZe,+t= 0.  (4.29) 

Finally we must include contributions from several counterterms deriving from 
the one-loop renormalisation in (2.22) and (2.32), represented in figures 3(u-x). We 
display the full amplitudes, which except for 3 ( u )  have no finite part, for each type 
of counterterm, and then after inserting the values of Z t ) ,  Zv', V(l'((p), (2, ) 
and ( Z ~ ' 2 ) ( 1 )  given in (3.8), (3.13) and (3.14), we separate the divergences into their 
local and non-local pieces using the methods of I together with appendix 1. 

We deal first with the terms associated with the matrix E in (2.32). These yield 

1 / 2  (1) 

(4.31) 

Next, we consider counterterms quadratic in U appearing in (2.22). The amplitude 
is given by 
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The counterterms with one U, one f lead to a contribution 

Finally, the counterterms quadratic in f give rise to an amplitude 

(4.34) 

(4.35) 

(4.36) 

Using (A2.7), we obtain 
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tion to the two-loop vacuum potential 

w\% [A, cplZ!e. .+x 

after using (A2.13) and the identity 

With the help of the relation, proved in I, 

(4.40) 

we can remove the non-local terms in (4.38), replacing the numerical coefficients of 
(F,yC2F,y) and Tr(CP2) by FE and (-11 + % E )  respectively. The pole terms in (4.38) 
can now be cancelled by taking in S"'[A, c p ]  

(z$')ab =' L [ B ( c 2 ) a b  -$(RC),b - 2  Tr(T2TaTb)] ,  

2 -1 A 
( M d d i a g  = ( 1 6 r  E )  

( 4 . 4 1 ~ )  
E ( 1 6 ~ ' ) '  

{ (20 + $E ) T 2  T 2  + (22  - e& ) C a b  Tar,  - ( 1 - E& )RabTaTb) (2) 2, = 
( 1 6 ~ ' ~ )  

1 1 1  
E ( 1 6 ~ ' ) '  12 - S,  -- ~ (4.416) 
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This result is exactly in accord with that obtained by van Damme (1982) since 
there the results were given for V'," ( q )  and Vi2) ( c p )  where 

Vu(+?) = v(z,1'2q). (4.44) 

With minimal subtraction Vu(q),  and also Za, are independent of the gauge-fixing 
procedure. Thus Vi'), Vi2), Z z ) ,  2:' define a gauge-invariant set of counterterms. 
As shown by van Damme (1982), the results agree with conventional calculations in 
some special cases. 
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Appendix 1. 

We collect here some results which are necessary to determine the residues of the 
poles arising from products of the Green functions '@ and Gg. The reader is referred 
to I for a fuller exposition of the heat kernel methods used to derive them. 

In general, given an elliptic differential operator on flat space, of the form (3.3), 
its Green function GA has a short distance expansion 

GA(x, ~ ) = G o ( x - y ) a t ( x ,  y)+Ri(X-y)a':(x, Y ) + R ~ ( x - Y ) ~ $ ( x ,  Y)+HA(X,  Y )  
(Al . l )  

where the singular functions Go, RI ,  Rz are specified in I (with CL = 1) and HA(x, y) 
contains no poles in E and is regular for x - y, even when two derivatives act on it. 
a t ,  a? and a$ are analytic functions of x and y obtained in the asymptotic expansion 
of the heat kernel. 

After using appendix A in I to evaluate the poles in products of the functions Go, 
R I  and R2,  the residues of these poles involve coincidence limits as y + x of a t ,  a? 
and a$ for the operators AF and G*9. From the well known recurrence relations for 
the coefficients a t ,  we find for A given by (3.3) 

( A 1 . 2 ~ )  

(A1.2b) 

( A 1 . 2 ~ )  

(A1.2d) 

with 

9,Y = a,Y +[X , ,  Y ]  

and cA as given in (3.46). 
Moreover, it then follows from I in conjunction with (A1.26, d )  that 

G A d , a g =  - ( 1 / 1 6 r r 2 ) ( 2 / ' ) Y f H A d , n n ,  ( A 1 . 3 ~ )  

(A1.3b) 2 -1 1 (D,GAap= (167 E )  kiavGGv -awy}+(DwHA)~mg. 
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The particular results we need are obtained by substituting in (A1.2) and (A1.3) 
the values of Xf, Y F  and X8,, Y g  given in (3.5) and (3.6). 

Appendix 2. 

The gauge invariance of U ( ( P )  can be used to derive some useful results. We have 

U(Cp) = U(G(P), G =expw”.  (A2.1) 

By extracting coefficients of w ,  w 2 ,  w 4  from (A2.1), we obtain 

ul (Taq)i = 0, (A2.2) 

(PTTaU“Tb(P =tu: ({Ta, TbI(o)i, (A2.3) 

TacP ) i  (Taq ) j  (Tb(P k (Tb(P ) I  

4 u : y k  (Tap ) i  (Tb(P )i (TaTb(P k 2 U iyk ( TacP )i (Tap j ( T2q ) k 

- ~ ( P ~ T , U ” T , T ~ ( P  - ~CabcpTTau”Tbcp + & a b v i  ( TaTb(P)i 

+2qTTaTbu”TbTacp +(pTT2U”TZq + (T2T2q)i  = 0. (A2.4) 

Further important relations are obtained by differentiating the above. By taking 

(A2.5) 

(A2.6)  

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 

(A2.11) 

Moreover, setting 6 = a in (A2.8)  and differentiating again leads, with the help of 
(A2.10), to the identity 

U ~ I ( T ~ ~ ) ~ ( T ~ ~ ) ~ + U : I ~ ~ ( T ’ ( P ) ~ - ( { U ” ,  T2})/k +2(TaU”Ta)ik = O s  (A2 .12)  
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Differentiating (A2.10) with respect to V I ,  we obtain 

U$l(TaCp)j+ U/k(Ta)jl + Urk(Ta)ji + U:$(Ta)jk =O. 
Now if we define the appropriate covariant derivative 6 acting on U”‘ by 

(A2.13) 

( G W U ” ‘ ) i k  =a,ui$ + (AZ)ilUI:k + (Az)jlU!k + (Az)klUi; (A2.14) 

we obtain on combining with (A2.13) 

(GWUltl)ijk = U;;;, (D,q),  (A2.15) 

and hence, if U ( 9 )  is quartic, 

U!’! I l k  G&J;$ = ( p q ) T s q  (A2.16) 

where S is as defined in (4.42). 
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